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Abstract—3D inverse rendering in indoor scenes with strong
light sources presents a significant challenge, primarily due to the
substantial ambiguity in material recovery caused by the complex
interaction between lighting and shadows. To address this, we
propose a novel approach that integrates an implicit-explicit
shadow predictor with a three-stage material estimation process.
Our method enhances shadow realism by accurately predicting
light interactions, while our material estimation process improves
SVBRDF quality under challenging lighting conditions. Extensive
experiments demonstrate the effectiveness of our method in both
quantitative and qualitative metrics, enabling realistic object
insertion and material replacement with proper shadow rendering
under strong indoor light sources.

Index Terms—inverse rendering, multi-view HDR images,
lighting estimation, implicit-explicit shadow predictor, relighting

I. INTRODUCTION

Inverse rendering, which deduces scene properties such
as geometry, lighting, and materials from images, has broad
applications like photo-realistic editing and augmented reality.
However, indoor scenes with complex lighting and materials
present significant challenges.

The first challenge is scene geometry and lighting repre-
sentation. i) For geometry, methods range from point clouds
and meshes to newer techniques like neural radiance fields
(NeRFs), with varying efficiency and computational demands.
ii) For lighting, the choice between low dynamic range (LDR)
and high dynamic range (HDR) impacts rendering accuracy,
with HDR providing more detailed radiance measurements.

The second challenge is material estimation, particularly
shadow and albedo decomposition under intense indoor lighting.
Shadows are prominent due to the strong light sources and
complex object interactions. This requires accurate shadow
decomposition for realistic scene editing. Existing methods have
not effectively solved this problem, especially when shadows
do not shift with changes in light source position.

To address these, we propose SIR (Shadow Inverse Ren-
dering), which efficiently decomposes shadows in indoor
scenes without explicit supervision. SIR uses an SDF-based
neural radiance field for scene representation and multi-view
HDR images to capture lighting. For unsupervised shadow
decomposition, we introduce a three-stage material estimation
process: 1) albedo initialization with hard shadows, 2) albedo
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refinement with differentiable soft shadows, and 3) roughness
refinement, along with instance-level BRDF regularization. This
improves SVBRDF quality and enables scene editing.

In summary, the main contributions are:
• We propose SIR, a new inverse rendering framework with

an explicit-implicit shadow predictor to decompose shadow
and albedo in multi-view indoor scenes.

• We present a three-stage material estimation strategy, incor-
porating differentiable shadow and BRDF regularization.

• Our method exhibits superior inverse rendering accuracy
on synthetic and real-world indoor datasets, demonstrated
through successful scene editing.

• We propose a multi-view, intense-light indoor scene inverse
rendering dataset with shadow ground-truths.

II. RELATED WORKS

A. Neural Scene Representations
Recent advances in neural scene representations have im-

proved geometry and radiance recovery for inverse rendering.
NeRF [1] generates new viewpoints using a single MLP but
struggles with geometric accuracy due to volume rendering
ambiguities [2]. Methods like NeuS [3] and VolSDF [4] address
this with SDFs, while 3D Gaussian splatting [5] has greatly
accelerated the process, as shown in GS-IR [6]. However,
challenges remain in capturing complex indoor topologies and
fine details. To tackle these, we adopt an SDF-based neural
radiance field optimized for topology, lighting, and materials.
To overcome these challenges, we adopt an SDF-based neural
radiance field optimized for geometry, lighting, and materials.

B. Lighting Estimation
Accurate lighting estimation is crucial for inverse ren-

dering, especially in indoor scenes. Most existing methods
focus on single images, primarily aiming to integrate virtual
objects into real scenes rather than significantly altering
the scene’s illumination [7]. Traditional approaches, such as
single environment maps and spherical lobes [8], often fail to
capture spatial variations and high-frequency lighting details.
Recent advancements have sought to improve 3D lighting
representations. For instance, per-pixel spatially-varying spher-
ical Gaussians (SVSG)[9] effectively capture high-frequency
effects and outperform spherical harmonics (SH) in depicting
indoor lighting details. Neural-PIL[10], a pre-integrated lighting
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Fig. 1. The pipeline has three phases: 1) A ray with direction v and point x is sampled from posed HDR images. The geometry network fd learns the signed
distance d to find surface point x̂, and the HDR-radiance network fc learns radiance Ĉ. 2) Diffuse lighting Li,d is integrated from the neural light probes field
E to learn irradiance I . 3) Hard shadow Shard is learned using ⇥h with pseudo ground truth ⇠. The implicit shadow predictor ⇥s is optimized with ⇥h as
prior knowledge. Instance-level BRDF regularizers are applied, optimizing the rendering equation to update Â, R̂, and Ssoft.

network based on image-based lighting (IBL), further enhances
global illumination representation compared to SGs and SH.
However, challenges like spatial instability and limited HDR
information persist [11, 12].

To address these issues, we adopt a neural HDR-radiance
field to represent IBL at any spatial point. This approach enables
a more accurate and detailed depiction of indoor lighting, with a
particular focus on physically accurate HDR lighting prediction.

C. Material Estimation
Material estimation in inverse rendering can be divided into

object-level and scene-level tasks. Object-level estimation [6,
13, 14, 15] focuses on individual objects under controlled
conditions, dealing with fewer variables and simpler lighting.
Scene-level estimation [16, 17], however, is far more complex
due to diverse lighting, multiple materials, and the presence of
shadows in entire scenes.

Scene-level estimation faces additional challenges based on
the input method. Single-view approaches [9], while simpler
and less data-intensive, often suffer from ill-posed problems,
leading to ambiguous or inaccurate results in complex scenes. In
contrast, multi-view methods [13, 14, 15, 16] leverage images
from multiple perspectives, providing richer information and
significantly reducing ambiguity.

To address the challenges of scene-level material estimation,
our work employs multi-view images, enabling accurate
extraction of material properties in complex indoor scenes.

III. METHODS

A. Preliminary
The traditional rendering equation [18] calculates the out-

going radiance Lo at surface point x̂ by integrating over the
hemisphere ⌦+ of incident light directions !i. It is given by:

Lo(x̂,!o) =

Z

⌦+
Li(x̂,!i)fr(x̂,!i,!o)V (x̂,!i)(!i · n̂x)d!i (1)

where Li is incoming radiance, fr is the BRDF describing light
reflection, and V is the visibility term indicating occlusion.

B. Geometry and Light Probes Field

For inverse rendering, it is important to estimate geometry
and lighting accurately, especially in indoor scenes. We use
VolSDF [4] for geometry representation and replace LDR
input with HDR images to capture more lighting details. The
geometry network predicts the signed distance, while the HDR-
radiance network predicts radiance based on position and view
direction. The scene is rendered using volume rendering [1].

In addition, we introduce a neural light probes field to
model spatially-varying lighting, inspired by Unity’s light
probes. This field is queried from a pre-trained HDR-radiance
field to estimate the lighting at any location in the scene. By
placing a virtual camera at a specific position, we obtain the
corresponding light probe E. The diffuse incoming lighting Li,d

at a point x is computed by integrating the incident radiance
over the hemisphere:

Li,d(x) =
Z

⌦+
E(x,!i)(!i · nx)d!i (2)

Here, E(x,!i) is the radiance at point x in direction !i,
obtained by querying the HDR-radiance field. This method
allows us to efficiently capture spatially varying lighting and
model diffuse incoming lighting for any given point.

To further enhance the lighting representation, we introduce
an irradiance field ⇥I(x), which learns irradiance values I at
any spatial position x, supervised by pre-computed incoming
lighting. This field models continuous and spatially-varying
global illumination in indoor scenes, significantly improving
the lighting model’s accuracy in complex environments.

C. Explicit Shadow Predictor

Shadows represent the occlusion between geometry and light-
ing. In indoor scenes, where primary light sources are strong,
shadows play a key role. Traditional graphics methods use ray
marching to compute hard shadows, but for inverse rendering,
where light positions are unknown, this becomes challenging.
Gradient optimization tends to bake shadows into the albedo,
leading to ambiguities during material estimation [19].



In HDR environments, the light intensity near light sources
can differ significantly from other areas. To detect hard shadows,
we set a threshold µ to distinguish between light and non-light
areas. If the light intensity at a point is below µ, it is classified
as being in shadow (⇠ = 0). This intensity is derived from the
pre-trained HDR-radiance field. Formally:

⇠ =

(
1, if �max(x) � µ,

0, if �max(x) < µ,
(3)

where �max(x) is the maximum incoming radiance intensity
at a point x over all directions.

This approach detects hard shadows, even with multiple
light sources or indirect lighting. To accelerate computation,
⇠ is used as pseudo ground truth, and a hard shadow field
⇥h learns shadow distributions at any 3D location. However,
limited sample rays may cause noise in edge areas. To improve
accuracy, a differentiable shadow module (Sec. III-D) refines
rendering using the hard shadow field as prior knowledge.

D. Material Estimation

Physically based rendering (PBR) provides an accurate
way to model light-material interactions [20, 21]. We use
the microfacet BRDF model from Unreal Engine [21] to
approximate surface reflectance and introduce a BRDF MLP
fr to model albedo Â and roughness R̂. However, directly
optimizing the BRDF MLP can lead to non-convergence,
especially for roughness, due to insufficient viewpoints and
self-occlusion [14]. Additionally, shadows can be inadvertently
baked into the albedo during optimization [15].

We propose a three-stage material estimation strategy com-
bining Monte Carlo rendering and light probe fields [15] to
recover albedo Â, roughness R̂, and soft shadows Ssoft. The
rendering equation is:

Lo(x̂,!o) =

Z

⌦+
E(x̂,!i)(

Â
⇡

+ fs(x̂,!i,!o))(!i · n̂x)V (x̂,!i)d!i

(4)
= Lo,d(x̂) + Lo,s(x̂,!o) (5)

Here, n̂x is the normal at the surface point x̂, !i is the
incident light direction, and !o is the view direction. According
to the Lambertian model [18], albedo Â contributes to the
diffuse component, while roughness R̂ affects the specular
component fs in the Microfacet model. The predicted rendering
result L̂o is split into diffuse L̂o,d and specular L̂o,s, with the
specular component computed using Monte Carlo integration.

We optimize the parameters of the rendering equation in the
following stages:

Stage 1: Albedo Initialization with Explicit Shadow Shard

Current neural inverse rendering methods [13, 14, 15] use
spherical uniform sampling for ambient occlusion, which fails
to capture cast shadows accurately (see in Appendix). Inspired
by shadow mapping and indoor scene lighting, we propose
extracting and normalizing the visibility term separately from
the rendering integral, using shadows cast by the main light
source for visibility approximation.

This approach contrasts with random sampling of transmit-
tance, which may misrepresent light attenuation. As ambient

occlusion from indirect light is already accounted for in
irradiance, it doesn’t need to be considered again.

Using the coarse albedo Â predicted by fr, we add a hard
shadow term ⇠ to the diffuse radiance, preserving inherent
surface colors without shadow artifacts.

Lo,d(x̂) =
Â
⇡

Z

⌦+
E(x̂,!i)(!i · n̂x)V (x̂,!i) d!i (6)

⇡ Â
⇡
⇠

Z

⌦+
E(x̂,!i)(!i · n̂x) d!i (7)

We pre-compute the hard shadow and irradiance terms with
MLPs ⇥h and ⇥I to minimize unnecessary ray samples and
improve computational efficiency. Thus, the predicted diffuse
radiance is L̂o,d = Â

⇡ ShardI .
Stage 2: Albedo refinement with implicit shadow Ssoft.

As discussed in Sec. III-C, hard shadows can introduce noise in
the rendering results. To mitigate this, we propose an implicit
shadow predictor Ssoft using an MLP to model the soft shadow
field ⇥s(x). This soft shadow representation extends beyond
the binary nature of hard shadows. The initial parameters of ⇥s

are inherited from the hard shadow field ⇥h. We replace the
hard shadow with the differentiable soft shadow in the diffuse
radiance equation, which results in L̂o,d = Â

⇡ SsoftI . The soft
shadow is updated by optimizing the diffuse radiance. Since
albedo and shadows interact, we introduce an instance-level
regularizer Lalbedo to ensure uniform luminance of the albedo
across instances. This regularizer is formulated as:

Lalbedo =
���

KX

i=1

 
Â� �inv

 P
p �(Â)�MiP

p Mi

!!��� (8)

where �(·) and �inv(·) convert between RGB and HSV, Mi is
the instance segmentation mask, K is the number of instance
classes, p is the minibatch of 3D points, and � denotes element-
wise multiplication.

Stage 3: Roughness refinement. In the first two stages,
roughness R̂ is predicted by the BRDF MLP fr. Since
roughness has a similar instance-level assumption, we add
a roughness smooth regularizer Lrough to make roughness
similar at the instance level.

Lrough =
���

KX

i=1

(R̂�
P

p R̂�MiP
p Mi

)
��� (9)

IV. EXPERIMENTS

Our SIR pipeline is validated through experiments conducted
on both synthetic and real-world indoor datasets.

A. Indoor Datasets
We developed two indoor datasets for evaluating our method:

1) Synthetic Dataset: An extended DM-NeRF dataset [23] with
six indoor scenes rendered using Blender Cycles. It includes
300 training and 200 testing images (400 ⇥ 400 pixels), with
modified object locations, colors, and properties (e.g., albedo,
roughness, shadows, and instance masks).
2) Real-World Dataset: The dataset includes two indoor
scenes with complex materials and lighting, captured with
a professional camera. Each scene has 120 HDR images (three
exposures, 1

15000 s to 1
8 s) resized to 512⇥512 pixels, with 85%

for training and 15% testing, challenging inverse rendering.
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Fig. 2. Qualitative results of all methods on two datasets (Syn: Restroom, Real: Office).

TABLE I
QUANTITATIVE RESULTS FOR ALL METHODS, AVERAGED ACROSS 6 SYNTHETIC SCENES.

Albedo Roughness Shadow View Synthesis
PSNR" SSIM " LPIPS # MSE # MSE # PSNR" SSIM " LPIPS #

MGNet [22] 12.9030 0.6676 0.3787 0.0994 - - - -
NVDIFFREC [15] 16.6377 0.7906 0.3736 0.0531 - 23.8048 0.8606 0.1863
IBL-NeRF [16] 16.7773 0.8468 0.2161 0.0564 - 24.5258 0.9263 0.0844
PhySG [13] 10.5322 0.7076 0.3838 - - 26.1667 0.9202 0.1014
InvRender [14] 12.5401 0.6740 0.4935 0.0412 - 23.8582 0.7521 0.3923
SIR (Ours) 20.2767 0.8600 0.2154 0.0445 0.0541 28.5456 0.9258 0.0964

TABLE II
QUANTITATIVE RESULTS ON view synthesis FOR ALL METHODS,

AVERAGED OVER 2 REAL-WORLD SCENES.

PSNR" SSIM " LPIPS #

NVDIFFREC [15] 22.7146 0.7798 0.4456
IBL-NeRF [16] 24.2781 0.7491 0.5225
PhySG [13] 22.1492 0.7796 0.4581
InvRender [14] 20.1327 0.6694 0.6384
SIR (Ours) 22.8176 0.8345 0.2931

B. Implementation

All neural fields in our network are implemented as multi-
layer perceptrons (MLPs) with ReLU activations. The geom-
etry network fd and HDR-radiance network fc follow the
VolSDF [4] setup: fd is an 8-layer MLP with 256 hidden units,
and fc is a 4-layer MLP with 256 hidden units. The irradiance,
shadow, and BRDF MLPs have 4 layers and 256 hidden units

each. We apply positional encoding with 10 and 4 frequency
components for 3D locations and directions, respectively.

The SDF-based neural radiance field is implemented in
PyTorch and optimized using Adam with a 5 ⇥ 10�4 learning
rate for 250K iterations. For irradiance and shadow estimation,
we use the same learning rate for 10K iterations, sampling
512 rays at each surface point. Material estimation phases use
Adam with a 10�3 learning rate for 25K iterations, sampling
128 rays for the BRDF term. Training on an NVIDIA GeForce
RTX 3090 GPU takes about 40 hours: 16 hours for phase one,
8 for phase two, and 16 for phase three.

C. Inverse Rendering
We compare our method with five well-known inverse

rendering approaches: 1) MGNet [24], 2) NVDIFFREC [15],
3) IBL-NeRF [16], 4) PhySG [13], and 5) InvRender [14].
NVDIFFREC uses a DMTet-based approach, IBL-NeRF is
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Fig. 3. Qualitative results of ablation study (Kitchen in synthetic dataset).

TABLE III
QUANTITATIVE RESULTS OF ABLATION STUDY ON SIR, AVERAGED ACROSS 6 SYNTHETIC SCENES.

Albedo Roughness Shadow View Synthesis
PSNR" SSIM " LPIPS # MSE # MSE # PSNR" SSIM " LPIPS #

(1) w/o Shard , Ssoft 16.6411 0.8084 0.2919 0.0712 - 28.2254 0.9221 0.0974
(2) w/o Ssoft 19.3836 0.8052 0.3061 0.0627 0.0650 27.8201 0.8946 0.1897
(3) w/o Lalbedo 19.2597 0.8454 0.2406 0.0676 0.0863 28.3610 0.9258 0.0924
Full SIR 20.2767 0.8600 0.2154 0.0445 0.0541 28.5456 0.9258 0.0964

NeRF-based, and PhySG and InvRender employ SDF-based
neural radiance fields. For fair comparison, we adapt InvRen-
der [14] and PhySG [13] to align with our VolSDF-based
geometry representation [4]. See the Appendix for details.

For the synthetic dataset, we report PSNR, SSIM [25],
LPIPS [26], and MSE for roughness and shadow predictions.
Since our method uniquely recovers shadows, we report only
MSE for shadow predictions, using binary ground truth shadows
from Blender for metric computation.

Our method outperforms baselines in material decomposition,
especially shadow extraction, leading to superior view synthesis
results for indoor scenes (Table I, Fig. 2). In real-world datasets,
it handles complex lighting conditions effectively, providing
reliable material estimations (Table II, Fig. 2). Although our
PSNR is slightly lower than IBL-NeRF, we show advantages
in SSIM and LPIPS, indicating better perceptual quality with
less distortion.

D. Ablation Study

The key innovation of our method is the capacity to effec-
tively isolate shadows while ensuring that these shadows are not
incorporated into the albedo under an indoor scene. Therefore,
this section is dedicated to evaluating the impact of shadow
terms, differentiable soft shadow, and albedo regularizer:
(1) Removing shadow terms: We remove both Shard and
Ssoft in phases 2, 3 to demonstrate the necessity of introducing
shadow terms in inverse rendering.
(2) Removing soft shadow: Without the differentiable shadow
Ssoft in phase 3, the pipeline re-renders images using hard
shadows Shard.
(3) Removing albedo regularizer: This ablation study evalu-
ates the impact of instance-level albedo consistency.

Table III (1) clearly shows that removing the shadow term
in the rendering equation leads to a significant decline in
novel view synthesis performance, adversely affecting albedo

estimation as well. The qualitative results in Fig. 3 further
highlight that the absence of shadow terms results in incorrect
albedo outputs with baked shadows, negatively impacting
synthesis results. However, introducing a binary (hard) shadow
still leads to suboptimal synthesis, as shown in Table III
(2), particularly around shadow edges (see Fig. 3). Therefore,
learning a differentiable soft shadow after an initial hard shadow
is necessary to preserve shadow details in the synthesis images.
Additionally, as demonstrated in Table III (3), the integration of
an instance-level albedo regularizer is effective in maintaining
albedo consistency for each instance, contributing to more
accurate synthesis results. Moreover, the MSE values on
roughness in Table III clearly show that correctly decomposing
shadows and albedo prevents the tendency for roughness to
diverge, leading to accurate roughness recovery.

E. Scene Editing
Once SIR has decomposed the intrinsic properties of indoor

scenes, it enables the realistic rendering of novel views by
manipulating these properties. To showcase its effectiveness,
we developed two editing applications: 1) object insertion
and 2) material replacement. Detailed explanations of these
applications can be found in the Appendix.

V. CONCLUSION

We propose SIR, a multi-view inverse rendering method on
indoor scenes, effectively addressing the challenges of material
and lighting decomposition by explicitly isolating shadows.
Leveraging posed HDR images and an SDF-based radiance
field, SIR significantly enhances realism in material estimation
and scene editing, surpassing previous methods with accurate
shadow estimation. The innovative incorporation of shadows
with a three-stage material estimation process substantially
improves the quality of SVBRDFs. Extensive evaluations on
diverse indoor datasets demonstrate the superiority of SIR in
both quantitative and qualitative aspects over existing methods.
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